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LOW-THRUST MULTIPLE GRAVITY ASSIST MISSIONS

Ghanghoon Paik∗, Robert G. Melton†

The application of continuous low thrust to a gravity assist can result in extra gain
of ∆v after the maneuver. In this paper, low thrust is applied to a gravity assist
maneuver around Venus to evaluate possible benefits. Particle swarm optimization
is applied to find the optimal sphere-of-influence entry location and the thrust di-
rection and magnitude. Once the full trajectory is determined, the characteristics
of both free and thrusted gravity assists are compared to evaluate the benefit of
additional thrust over free gravity assist. Thrusted maneuvers show improvement
in ∆v gain and closer approach to a planet.

INTRODUCTION

Gravity assist maneuvers are widely used for deep space missions to utilize benefits from free
∆v and obtain opportunities to swing-by planetary bodies at close distance. Additional thrust at
the periapsis of the trajectory is known to boost the effect of ∆v gain of the gravity assist (Oberth
effect).1 In order to get maximum benefit from the thrust, it should be placed at the periapsis where
orbital velocity is maximized. A spacecraft can thrust at periapsis of either an elliptical transfer
orbit or hyperbolic flyby trajectory inside a planet sphere-of-influence (SOI) as shown in Figure 1.

Previous research has combined gravity assist with thrust. Some work analyzed the effect of the
Oberth effect when impulsive thrust is applied at the periapsis of an elliptical trajectory similar to
Figure 1a.2, 3 These approaches show potential benefits of propulsion added to free gravity assist.
Also, multiple gravity assists with deep space maneuvers (DSMs) is an active research area. Re-
search done in this field has implemented impulsive or continuous thrust during the coasting phase
of interplanetary missions.4–11 Applied DSMs allow a spacecraft to encounter a target planet at a
desired time. DSMs can also be used to increase the energy of an orbit or change the direction of
the spacecraft.

In this work, gravity assist combined with the Oberth effect using low thrust is used to show the
behaviors and benefits for multiple gravity assist missions. Also, progress on a sequence search
method is discussed. The patched conic assumption is made to simplify the trajectory calculation
of a spacecraft. Continuous low thrust is applied during the flyby phase inside the SOI as shown in
Figure 1b.

METHODS

Methods used in the preliminary work are covered here including dynamics, sequence searching,
and particle swarm optimization.
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Figure 1: Oberth effect with impulsive ∆v

The dynamics of a spacecraft is based on simple two-body equations in polar coordinates and
thrust is applied for low powered gravity assist. In this paper, searching for the gravity assist se-
quence is not completed. However, it is still in development for the future application. One of the
highly considered techniques, the ∆v isoline graphical method, is described. The use of ∆v isoline
graphical method may reduce complexity of sequence search for multiple gravity assist mission
design. The particle swarm optimization method is implemented to find an optimal amount and
direction of thrust.

Dynamics

In this work, all orbits are assumed to be 2-D coplanar for simplicity. Since continuous thrust
is applied while a spacecraft is flying inside the SOI, the behavior of the spacecraft should be
determined for both conditions (with and without applied thrust) to represent the effect of the thrust.

Due to the 2-D assumption, the spacecraft dynamics can be represented in a polar coordinate
form. The heliocentric axis is based on the J2000 ecliptic plane and the planetocentric axis is
pointing in the same direction as the heliocentric axis but fixed to the planet.12, 13 Let r, vr, θ, and
vθ be radial distance, radial velocity, anglular displacement from x-axis, and transverse velocity,
respectively. The equation is written in state-space form as14, 15
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T . Equation (1) is used to generate the heliocentric trajectory of the spacecraft

while it is coasting from one planet to another. Then, for powered gravity assist trajectories, the
thrust term is introduced. Applying thrust adds an input
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Figure 2: Sample scenario of gravity assist trajectories

where T is the thrust, m is the spacecraft mass, and β is the thrust-pointing angle. The thrust
pointing angle β for the continuous thrust is defined as as third-order polynomial

β = β1 + β2t+ β3t
2 + β4t

3 (3)

where the coefficients βi are determined via a heuristic optimization method.

Searching for Sequences

It is not an easy task to find an optimal sequence for multiple gravity missions. There are several
challenges to generating a (optimal) sequence. One of them is the complexity of the problem, which
can increase rapidly as more planets or swing-by’s are considered. If all possibilities are included,
the complexity of the problem becomes (Nplanet−1)NGA+1 whereNplanets is the number of planets
involved andNGA is the number of gravity assist maneuvers. For example, if 3 planets and 2 gravity
assists maneuvers are planned to be used, the total number of possible scenarios is 23. This sample
scenario is represented in Figure 2. If returning to the same planet for swing-by is also considered,
the complexity increases to NNGA+1

planet .

Because gravity assist maneuvers can be performed only when the spacecraft encounters a plan-
etary body, the number of possible trajectories can be reduced if unavailable ones are eliminated. In
order to check the validity of the maneuver, the ∆v isoline graphical method is introduced for the
work. The graphical method is based upon the amount of ∆v required to transfer from a circular
departure planet’s orbit to an elliptical transfer orbit.16–19 In Figure 3, ~rc represents the radius of

~vc

~ve

∆~v ~rc

~rp

Figure 3: Impulsive ∆v diagram for the circular-elliptical orbit transfer

circular orbit of the departure planet and ~rp is radius of periapsis of the elliptical transfer orbit from
the Sun. Since the orbit of the planet is fixed, applying different amount of ∆v changes the size
of the transfer orbit. All possible cases are shown in the Figure 4. From Figure 4, the relationship
between rp and ∆v can be obtained and plotted as Figure 5. By plotting such a relationship for
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Figure 4: Four possible scenarios of transfer orbits with restraints
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Figure 5: Isolines of periapsis distance vs. period for given ∆v
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multiple planets, combined isoline figures can be generated. For example, Figure 6 represents the
combination of Venus and Mars plots. From the plot with multiple planets, intersections where two
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Figure 6: Isolines of Venus and Mars

lines coincide indicate characteristics of possible gravity assist transfers. Therefore, only transfers
with achievable amounts of ∆v’s need to be evaluated when designing a mission.

Particle Swarm Optimization for Trajectory Propagation

In this work, the PSO with inertial, cognitive, and social influences is used to find trajectories of
a spacecraft both when the thrust is turned on and off inside SOI. The PSO uses five parameters,
four from Equation (3) and one for thrust magnitude, to obtain maximum ∆v of the gravity assist
maneuver. The particle structure is

P = [β1, β2, β3, β4, Nthr] (4)

where the βi are polynomial coefficients of the thrust pointing angle and Nthr is the magnitude of
thrust in Newton. The cost function, J , is the sum

J = |∆vf |+ α|∆rp| (5)

where |∆vf | is a difference in final velocity of (with and without the applied thrust) the spacecraft
when it is leaving the SOI and |∆rp| is a difference in periapsis distance with and without the
applied thrust. The second term is a penalty function with α defined as

α =

{
0 if |∆rp| < 10−3

1000 if |∆rp| > 10−3
. (6)

This penalty term is imposed to enforce a desired periapsis distance.
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PRELIMINARY RESULTS

A preliminary result that reproduces the first gravity maneuver of the Cassini mission is presented.
Once a spacecraft departs from Earth, it coasts freely until it reaches an arrival planet. The coasting
trajectory can be determined from Lambert’s solution. While solving the Lambert’s problem, it is
possible to specify the SOI entry point. Choosing an optimal entry point can affect the amount of
∆v gain from the swing-by. After the optimal entry point is found, continuous low thrust is applied
to maximize the final ∆v. Though it is not necessarily maximized, the work done here is focused
on maximum ∆v output.

In this work, several assumptions are made for the simulation. The predefined assumptions are:
1) Spacecraft mass is 2000 kg. 2) Maximum thrust is 10 N 3) Fuel consumption is not considered.
4) The thruster can point any direction. 5) Earth launch and Venus arrival dates are October 15,
1997 and April 26, 1998 at 00:00:00.

The inertial coordinate system used in this research is based on the 2-D ecliptic plane at the epoch
J2000. Also, the planetocentric coordinate system is fixed, and each axis is pointing in the same
direction as the ecliptic coordinate system. Figure 7 represents each coordinate system.

alt.

entry angle

SOI

Planet

Figure 7: Visual description of terms and coordinate system

Entry Point Optimization

In order to find the optimal entry point for the highest ∆v from free gravity assist, Lambert’s
problem is solved for all possible points around the boundary of the SOI. The results of all points are
shown in Figures 8-10. From Figure 8, the minimum periapsis altitude of the spacecraft occurs for
an SOI entry point at approximately 119◦, however, the corresponding periapsis altitude is below 0
km. Figure 9 indicates that entry angles below 119◦ give negative ∆v’s which are not valid. Finally,
by evaluating Figure 10, the minimum altitude, 4179 km, for the maximum ∆v, 5.377 km, can
be found. Thus, from Figures 8-10, the best entry point is located at 120◦. Since the best entry
location to achieve the highest possible ∆v can be selected from the listed criteria, this process can
be automated by comparing the entry angle, periapsis altitude, and ∆v.

6



0 50 100 150 200 250
-1

0

1

2

3

4

5

6

7
10 5

Figure 8: Periapsis altitude vs. entry angle of the free gravity assist maneuver
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Figure 9: Specific energy and ∆v vs. entry angle of the free gravity assist maneuver
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Figure 10: ∆v vs. periapsis altitude of the free gravity assist maneuver

Thrust Application

Once the optimal entry location is defined, continuous thrust is applied to the spacecraft. In this
work, the maximum thrust capability of the spacecraft is assumed to be 10 N. The PSO algorithm is
used to find the optimal thrust for the maximum ∆v gain. From the result of the PSO, the optimal
thrust level is -3.37 N where the negative value represents a deceleration. The comparison of free
and thrusted gravity assist is shown in Table 1. As a result of the applied thrust, total ∆v is increased
by roughly 1.5 km/s, and the spacecraft approaches much closer to the planet.
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(a) Free vs. thrusted trajectory inside the SOI
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(b) Free vs. trusted trajectory near the planet

Figure 11: Trajectory comparison of resulting trajectories with and without thrust method

The powered gravity assist around Venus changes the orbital characteristics. As shown in Table
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Free Low Thrust
Thrust (N) 0 -3.371
∆v (km/s) 5.377 6.949
Egain (km2/s2) 127.855 132.533

δ (deg) 58.175 73.727
Periapsis alt. (km) 4178.967 302.590

TOF (hours) 56.152 56.654

Table 1: Differences of Free and Low Thrust Gravity Assist

1, 132.5 km2/s2 of specific energy is gained, and the orbit extends farther and closer to Mars’
orbit. However, unlike the real Cassini mission, this work does not apply a trajectory correction
maneuver. Since the adjustment is not made, the spacecraft is unable to encounter Venus again.
The entire trajectory from Earth departure is plotted in Figure 12. Locations of Earth and Venus at
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Figure 12: Preliminary result trajectory

departure (October 15, 1997) are marked as asterisks (∗) and at arrival (April 26, 1998) as diamonds
(♦). Circles (◦) represent intersections of the spacecraft and planets’ orbits. The actual locations
of planets when the spacecraft is crossing planets’ orbits are shown with squares (�). Thus, if the
circle and square coincide on any planet’s orbit, the spacecraft can make a gravity assist maneuver.

The preliminary results show that applied thrust can significantly boost the ∆v gain from the
gravity assist. Also, the radius of periapsis is clearly lowered as shown in Figure 11b. In order to
clarify the influence of pure thrust versus lowering the periapsis altitude, let the periapsis location be
the control variable while varying the entry location by 1 degree. The reason for using different entry
points is because there is a unique path that can pass it from each entry location. Hypothetically,
if thrust is the major factor that affects ∆v gain, applying thrust should show improvement in ∆v
when periapsis is fixed. Thrust directions and magnitudes are chosen from the PSO algorithm. Since
the goal of the PSO in this work it to maximize ∆v, the resultant values are the best scenarios from
given conditions. Table 2 compares results from 4 different test cases including the reference case
which is the free gravity assist entering the SOI at 120◦.
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119 deg 120 deg (Ref.) 121 deg 122 deg
Thrust (N) 4.09 0 -4.95 -8.46
∆v (km/s) 5.372 5.377 5.511 5.489
Egain (km2/s2) 130.377 127.855 127.489 125.374

δ (deg) 54.574 54.965 56.695 56.794
Periapsis alt. (km) 4178.968 4178.968 4178.968 4178.968

TOF (hours) 55.850 56.152 56.999 57.183

Table 2: Comparison of different entry points

Figure 13 shows all compared trajectories. All of them pass the same periapsis location while
using different amounts of thrust and leaving the SOI close to each other. From the results in Table
2, both ∆v and specific orbital energy are not increased much or even decreased. It proves that
applying thrust itself is not advantageous but flying closer to a planet can allow the spacecraft to
maximize ∆v gain from the gravity assist. Thus, to acquire the most gain from the gravity assist
maneuver with continuous thrust, it is suggested to target the lowest possible periapsis altitude.
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(a) Trajectories inside SOI
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Figure 13: Comparison of paths inside SOI from different entry locations

CONCLUSION

A gravity assist strategy with continuous low thrust is presented in this work. The technique
to find the trajectory for powered gravity assist is developed and tested. Also, potential methods
to search for the multiple gravity assist sequence are discussed. The preliminary simulation is
performed to reproduce the Cassini mission trajectory while not adopting a deep space maneuver
after the first Venus flyby.

An increase in efficiency of gravity assist can be expected when low thrust is applied during the
flyby. In the future, the main objective for the PSO can be modified from simply maximizing the
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∆v gain to enough ∆v to reach the next target planet in order to give flexibility. Then, a search
sequence method can help complete the multiple gravity assist mission design.

Since the research is still in progress, the preliminary results presented have limitations that need
to be improved for the future work. When the method is fully developed, it is hoped to automatically
generate complete trajectories for low powered multiple gravity missions.

During the thrusted maneuver, the spacecraft uses fixed direction and magnitude of propulsion
to approach closer to the planet. The resulting thrust shown is decelerating the spacecraft for the
entire period and possibly restricts potential ∆v gain from the powered gravity assist. Instead, in the
future, time-varying thrust direction and magnitude before and after passing the periapsis inside the
SOI will be considered to further maximize ∆v. Additionally, a new model for the thrust pointing
angle could be developed for time-varying thrust pointing.

This preliminary work assumed a fixed spacecraft mass model which may not be realistic to
simulate continuous thrust during the flyby. The mass flow rate from the spacecraft could be added
to better model the dynamics.

NOTATION

Egain specific energy gained after gravity assist maneuver
J cost function
m spacecraft mass

NGA total number of gravity assist maneuvers
Nplanets number of planets used for gravity assists

Nthr thrust thrust magnitude
pi planet number (i = 1, 2, and 3)
r radial distance
ra radius of apoapsis
rc radius of circular orbit
rp radius of periapsis
T thrust magnitude
t time
vc circular orbit velocity
ve elliptical orbit velocity
vr radial velocity
vθ transverse velocity
~x state vector
α penalty multiplier
β thrust pointing angle
βi polynomial coefficients of thrust pointing angle (i = 1, ..., 4)

∆v change in velocity before and after the maneuver
∆rp difference in periapsis distance
∆vf difference in final velocity (with and without thrust)

δ turn angle
θ angular displacement from x-axis
µ standard gravitational parameter
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